Biochemical, Transcriptional and Translational Evidences of the Phenol-meta-Degradation Pathway by the Hyperthermophilic Sulfolobus solfataricus 98/2
نویسندگان
چکیده
Phenol is a widespread pollutant and a model molecule to study the biodegradation of monoaromatic compounds. After a first oxidation step leading to catechol in mesophilic and thermophilic microorganisms, two main routes have been identified depending on the cleavage of the aromatic ring: ortho involving a catechol 1,2 dioxygenase (C12D) and meta involving a catechol 2,3 dioxygenase (C23D). Our work aimed at elucidating the phenol-degradation pathway in the hyperthermophilic archaea Sulfolobus solfataricus 98/2. For this purpose, the strain was cultivated in a fermentor under different substrate and oxygenation conditions. Indeed, reducing dissolved-oxygen concentration allowed slowing down phenol catabolism (specific growth and phenol-consumption rates dropped 55% and 39%, respectively) and thus, evidencing intermediate accumulations in the broth. HPLC/Diode Array Detector and LC-MS analyses on culture samples at low dissolved-oxygen concentration (DOC = 0.06 mg x L(-1)) suggested, apart for catechol, the presence of 2-hydroxymuconic acid, 4-oxalocrotonate and 4-hydroxy-2-oxovalerate, three intermediates of the meta route. RT-PCR analysis on oxygenase-coding genes of S. solfataricus 98/2 showed that the gene coding for the C23D was expressed only on phenol. In 2D-DIGE/MALDI-TOF analysis, the C23D was found and identified only on phenol. This set of results allowed us concluding that S. solfataricus 98/2 degrade phenol through the meta route.
منابع مشابه
Role of vapBC toxin-antitoxin loci in the thermal stress response of Sulfolobus solfataricus.
TA (toxin-antitoxin) loci are ubiquitous in prokaryotic micro-organisms, including archaea, yet their physiological function is largely unknown. For example, preliminary reports have suggested that TA loci are microbial stress-response elements, although it was recently shown that knocking out all known chromosomally located TA loci in Escherichia coli did not have an impact on survival under c...
متن کاملEfficient CRISPR-Mediated Post-Transcriptional Gene Silencing in a Hyperthermophilic Archaeon Using Multiplexed crRNA Expression
CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats)-mediated RNA degradation is catalyzed by a type III system in the hyperthermophilic archaeon Sulfolobus solfataricus Earlier work demonstrated that the system can be engineered to target specifically mRNA of an endogenous host reporter gene, namely the β-galactosidase in S. solfataricus Here, we investigated the effect of single...
متن کاملAn additional glucose dehydrogenase from Sulfolobus solfataricus: fine-tuning of sugar degradation?
Within the SulfoSYS (Sulfolobus Systems Biology) project, the effect of temperature on a metabolic network is investigated at the systems level. Sulfolobus solfataricus utilizes an unusual branched ED (Entner-Doudoroff) pathway for sugar degradation that is promiscuous for glucose and galactose. In the course of metabolic pathway reconstruction, a glucose dehydrogenase isoenzyme (GDH-2, SSO3204...
متن کاملCoordinate transcriptional control in the hyperthermophilic archaeon Sulfolobus solfataricus.
The existence of a global gene regulatory system in the hyperthermophilic archaeon Sulfolobus solfataricus is described. The system is responsive to carbon source quality and acts at the level of transcription to coordinate synthesis of three physically unlinked glycosyl hydrolases implicated in carbohydrate utilization. The specific activities of three enzymes, an alpha-glucosidase (malA), a b...
متن کاملThe semi-phosphorylative Entner-Doudoroff pathway in hyperthermophilic archaea: a re-evaluation.
Biochemical studies have suggested that, in hyperthermophilic archaea, the metabolic conversion of glucose via the ED (Entner-Doudoroff) pathway generally proceeds via a non-phosphorylative variant. A key enzyme of the non-phosphorylating ED pathway of Sulfolobus solfataricus, KDG (2-keto-3-deoxygluconate) aldolase, has been cloned and characterized previously. In the present study, a comparati...
متن کامل